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Abstract. A theory of thec-axis electronic conduction due to the competition between interlayer
direct hopping and the hopping assisted by the spin fluctuations has been developed and on this
basis the experimental results of YBa2Cu3O7−δ have been interpreted. Our theoretical analysis fits
the experimental results excellently and provides good evidence that the spin fluctuations affect the
c-axis electronic conduction and lead to the anomalous behaviour.

1. Introduction

It is well known that the most striking features of high-Tc oxides are their anomalous physical
properties above their transition temperatureTc. For example, the electrical resistivity is linear
in temperature in a wide range of temperatures aboveTc, the infrared conductivity deviates
from the Drude form, showing a relaxation rate proportional to the frequency, the nuclear
spin–lattice relaxation rate shows an anomalous temperature dependence different from that
in normal metals etc [1, 2].

The above anomalous physical properties have been explained in terms of
antiferromagnetic spin fluctuations in two-dimensional metals [3–11]. For thec-axis electronic
conduction of YBa2Cu3O7−δ measurements show semiconducting-like behaviour in the
underdoped regime and metallic behaviour in the overdoped regime above the superconducting
transition temperature [12–14]. To date, there is no consensus concerning thec-axis electronic
conduction, though various proposals exist [15–18]. Since the nearly linear temperature
dependence of in-plane electrical resistivity can be explained in terms of the antiferromagnetic
spin fluctuations [19], we expect naturally that the antiferromagnetic spin fluctuations affect
thec-axis electronic conduction and lead to the anomalous behaviour.

The rest of the paper is organized as follows. In section 2 we develop a theory of thec-axis
electronic conduction, on the basis of the model of the competition between interlayer direct
hopping and the hopping assisted by spin fluctuations. In section 3 we discuss our results and
compare them with experimental data. The paper concludes with a summary in section 4.

2. The theory

The Hamiltonian describingc-axis electronic conduction due to the competition between
interlayer direct hopping and the hopping assisted by the spin fluctuations can be written
as follows:

H = H(1) +H(2) +HT (2.1)
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whereH(1) is the Hamiltonian for the layer-1 carrier of the hopping junction. It contains
all many-body interactions. Similarly,H(2) has all the physics for the layer-2 carrier of the
hopping junction. These two are considered to be strictly independent. Not only do these two
operators commute, [H(1), H (2)] = 0, but they commute term by term. The hopping is caused
by the termHT in (2.1):

HT = J
∑
EkEk′µµ′

{
ES(Ek′ − Ek)Eσµµ′)C(1)+Ekµ C

(2)+
Ek′µ′ + (ES(Ek − Ek′)Eσµ′µ)C(2)+Ek′µ′ C

(1)
Ekµ

}
+
∑
EkEk′µµ′

{
D
µµ′
EkEk′ C

(1)+
Ekµ C

(2)
Ek′µ′ +D

µ′µ
Ek′ Ek C

(2)+
Ek′µ′ C

(1)
Ekµ

}
(2.1a)

whereJ is the constant of the interlayer hopping assisted by the spin fluctuations,D
µµ′
EkEk′ is the

interlayer direct hopping matrix element,Eσµµ′ is the Pauli matrix element,ES(Eq) is the spin

fluctuation operator andC(i)+Ekµ

(
C
(i)

Ekµ

)
is the i-layer carrier creation (annihilation) operator.

Physically, the interlayer direct hopping arises from Giaver tunnelling and the interlayer
hopping assisted by the spin fluctuation arises from the spin fluctuations scattering (represented
by the ES(Eq) which couples to the quasiparticles with strengthJ ) which is analogous to the
standard case of phonon-assisted hopping [30] except for the spin fluctuation operator replacing
the phonon operator. The type of Feynman diagram that arises in the following calculation of
the hopping current is shown in the appendix. The paper [17] also proposed a similar model
but without a quantitative result.

After the standard procedure applied to the single-particle hopping current equation (cf
[20]), the hopping current is given by the following formula:

I = Id + Isf (2.2)

Id = 2e
∑
EkEkµµ′

∣∣∣Dµµ′
EkEk′
∣∣∣2 ∫ ∞
−∞

dω

2π
A(1)µ (
Ek, ω)A(2)µ′ (Ek′, ω + eV )[nF (ω)− nF (ω + eV )] (2.2a)

Isf = 6J 2e

∫ ∫
dω

2π

dω′

2π

∑
EkEq

Im χ−+(Ek − Eq, eV + ω − ω′)A(1)µ (Eq, ω)A(2)µ′ (Ek, ω′)(nF (ω)

+nB(eV + ω − ω′))(nF (ω′ − eV )− nF (ω′)) (2.2b)

whereId is the interlayer direct hopping currents,Isf is the currents of the hopping assisted by
the spin fluctuations.A(i)µ (Ek, ω) are the spectral functions for the electrons in layeri, nF (ω) is

the Fermi function,nB(ω) is the Bose function,V is the voltage and Imχ−+(Ek, ω) is the spin
fluctuation spectral function.

Because we primarily study the interlayer hopping of the quasiparticle, we simply choose
the following the free-quasiparticle approximation forA(i)µ (Ek, ω) (as in [20] 796)

A(i)µ (
Ek, ω) = 2πδ

(
ω − ε(i)Ekµ

)
. (2.3)

Then from the equations (2.2a), (2.2b) and (2.3) we obtain

Id = 4πe
∑
EkEk′µµ′

∣∣∣Dµµ′
EkEk′
∣∣∣2 δ (ε(2)Ek′µ′ − ε(1)Ekµ − eV ) [nF (ε(1)Ekµ)− nF (ε(2)Ek′µ′)] (2.4a)

Isf = 6J 2e
∑
EkEq

Im χ−+
(
Ek, ε(1)Eqµ − ε(2)Ek+Eqµ′

) (
nF

(
ε
(1)
Eqµ
)

+ nB
(
ε
(1)
Eqµ − ε(2)Ek+Eqµ′

))
×
(
nF

(
ε
(2)
Ek+Eqµ′ − eV

)
− nF

(
ε
(2)
Ek+Eqµ′

))
. (2.4b)
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Table 1. The fit parametersη, σd andλ for samples in figures 1–4.

η σd λ λ/σd

Samples (m� cm mol emu−1 K−1) (m�−1 cm−1) (mol emu−1 K−1m� cm−1) (mol emu−1 K−1)

0.03 44.84 0.338 3 5.911 17.473
0.12 77 0.034 3.4 100
0.22 127.88 0.002 467 1.124 455.68
0.32 135 0.000 25 0.315 6300

For equation (2.4a) we assume that the density of states on both layers is roughly constant:∑
Ek
→
∫

d3Ek
(2π)3

→ N(1)
∫

dε(1)Ekµ

∑
Ek′
→
∫

d3Ek′
(2π)3

→ N(2)
∫

dε(2)Ek′µ′ (2.5)

and
∣∣∣Dµµ′
EkEk′
∣∣∣ ≈ |D|2. Then equation (2.4a) becomes

Id = 4e2N(1)N(2)π |D|2V. (2.6)

For equation (2.4b) the first step is to do theEq-summation:∑
Eq
→
∫

d3Eq
(2π)3

→ 1

(2π)2

∫
dε(1)Eqµ

∫
m

Ek dε(2)Ek+Eqµ′ . (2.7)

Then

Isf = 3J 2e2mV

2π2

∑
Ek

∫
dε(1)Eqµ Im χ−+

(
Ek, ε(1)Eqµ

) (
nF

(
ε
(1)
Eqµ
)

+ nB
(
ε
(1)
Eqµ
))
. (2.8)

For theEk-summation we have∑
Ek

1

|Ek| →
1

(2π)2

∫ kc

0
d2Ek. (2.9)

Then equation (2.8) becomes

Isf = 3J 2e2mV

2π2

1

(2π)2

∫ kc

0
d2Ek

∫ ∞
0

dω Imχ−+(Ek, ω)
(

coth

(
βω

2

)
− tanh

(
βω

2

))
(2.10)

where we have usedε(1)Eqµ → ω.
From equations (2.6) and (2.10) we obtain thec-axis electronic conduction due to the

competition between interlayer direct hopping and the hopping assisted by the spin fluctuations
as follows:

σc = σd + σsf (2.11)

with

σd = 4e2N(1)N(2)π |D|2 (2.11a)

σsf = 3J 2e2m

2π2

1

(2π)2

∫ kc

0
d2Ek

∫ ∞
0

dω Im χ−+(Ek, ω)
(

coth

(
βω

2

)
− tanh

(
βω

2

))
. (2.11b)
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Figure 1. ρc versusT (solid line) from equation (3.1), experimental data (open circles) from [27]
for δ = 0.07.

Figure 2. ρc versusT (solid line) from equation (3.1), experimental data (open circles) from [27]
for δ = 0.12.

For the spin fluctuation spectral function, we take the model of Millis, Monien and Pines
(MMP) [21]:

Im χ−+(Ek, ω) = χQ(T )ω/ωsf

[1 + ξ2(Ek − EQ)2]2 + ω2/ω2
sf

(2.12)
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Figure 3. ρc versusT (solid line) from equation (3.1), experimental data (open circles) from [27]
for δ = 0.22.

Figure 4. ρc versusT (solid line) from equation (3.1), experimental data (open circles) from [27]
for δ = 0.32.

whereχQ(T ) is the static spin susceptibility at the antiferromagnetic wave vectorEQ and
ξ is the temperature-dependent antiferromagnetic length. In the normal state,χQ(T ) =
χ0(T )(ξ/a)

2√β ′, whereχ0(T ) is the experimentally measured uniform spin susceptibility
which is in general temperature dependent. ¯hωsf is a typical energy scale for the
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Figure 5. η−1 andω2
p versus dopingx. Fit parameters (circles), formula (squares and solid line)

and experimental data (triangles) from [28].

Figure 6. λ versus dopingx. Fit parameters (circles), formula (squares and solid line).

antiferromagnetic paramagnons that describe the antiferromagnetic spin dynamics, which is
given byωsf = 0/

√
β ′π(ξ/a)2, where0 plays the role of a magnetic Fermi energy andβ ′ is

a constant.
Using equation (2.12), expression (2.11b) may be evaluated (cf [22]) to give the following

result:

σsf = Aχ0(T )T (2.13)

with

A = 3e2J 2mkB
√
β ′d

8π3

∫ ∞
0

dx{tan−1(x/z)− tan−1(x/z(1 + r))}[coth(x/2)− tanh(x/2)]
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Figure 7. σd andω2
pc versus dopingx. Fit parameters (circles), formula (squares and solid line)

and experimental data (triangles) from [29].

wherez = ωsf /kBT andr = 40/
√
β ′ωsf . For YBa2Cu3O7−δ, A is constant independent

of temperature. In equation (2.13),T is the absolute temperature.χ0(T ) is the uniform spin
susceptibility. It reflects thec-axis electronic conduction due to hopping assisted by the spin
fluctuations. Because the in-plane electrical resistivityρab ∝ χ0(T )T [19, 23, 24] which is
based on the fact that the in-plane electrical resistivityρab arises from electrons being scattered
by spin fluctuation, we obtain that thec-axis electronic conduction due to hopping assisted by
the spin fluctuations is proportional to the in-plane electrical resistivity, i.e.

σsf ∝ ρab (2.14)

σsf ∝ ρab ∝ χ0(T )T indicates that thec-axis electronic conductionσsf and the in-plane
electrical resistivityρab have a common origin, i.e. the effect of spin fluctuation.

Using equations (2.11), (2.11a) and (2.13) and considering thec-axis electrical resistivity
of the CuO2 layer which is proportional toρab also, we have the following result:

ρc = ηχ0(T )T +
1

σd + λχ0(T )T
(2.15)

whereη,σd andλare constants independent of temperature.ρc is thec-axis electrical resistivity
of YBa2Cu3O7−δ. In the following section, we will discuss our results and compare them with
experimental data.

3. Comparison with experiment

From the result of the previous section thec-axis electrical resistivity of YBa2Cu3O7−δ can be
expressed by the following formula:

ρc = ηχ0(T )T +
1

σd + λχ0(T )T
(3.1)

whereχ0(T ) represents the uniform spin susceptibility.T is the absolute temperature.η,σd and
λ are constants independent of temperature. The second term represents thec-axis electronic
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conduction due to the competition between interlayer direct hopping and the hopping assisted
by the spin fluctuations.

First we note thatη,σd andλand are not affected by Zn doping andχ0(T )of YBa2Cu3O7−δ
is not affected by Zn doping either [12]. Thus both the magnitude andT dependence ofρd
do not change with Zn doping, which is in agreement with the experiment [12, 25]. Second
for χ0(T ) of YBa2Cu3O7−δ we use the experimental values [26]. Then the least-squares fits
of the theoretical expression equation (3.1) to the experiment [27] are shown in figures 1–4.
The solid curve is obtained from equation (3.1).The fit parametersη, σd andλ for samples in
figures 1–4 are given in table 1. We find that the parameterλ/σd increases from overdoping to
underdoping states. Sinceλ/σd represents the competition between interlayer direct hopping
and the hopping assisted by the spin fluctuations, we can conclude that in the underdoped
regime the interlayer hopping assisted by the spin fluctuations is dominant. On the other hand
we can find that each parameter shows a doping dependence as in figures 5–7. In figure 5 we
plot the values ofη−1 andω2

p (the Drude spectral weight) as a function of dopingx. These
values ofω2

p are taken from paper [28], which estimated the Drude spectral weight from the
magnetic penetration depth or optical conductivity spectrum. Bothη−1 andω2

p show the same
doping dependence and indicate that the fit parameterη−1 is reasonable. In figure 6 we plot
the values ofλ and find thatλ ∼= η−2, which indicates thatσsf andρab have the same origin.
In figure 7 are plotted the values ofσd andω2

pc and (the Drude spectral weight of thec-axis)
as a function of dopingx. These values ofω2

pc are taken from paper [29], which estimated
the Drude spectral weight from the optical conductivity spectrum. Both andσd andω2

pc show
the same doping dependence and indicate that the fit parameterσd is reasonable. The fitting
is satisfactory and seems to support our model of thec-axis electronic conduction due to the
competition between interlayer direct hopping and the hopping assisted by spin fluctuations.

4. Summary

In this paper we develop a theory of thec-axis electronic conduction, on the basis of the model of
the competition between interlayer direct hopping and the hopping assisted by spin fluctuations,
and obtain a theoretical expression of thec-axis electronic resistivity of YBa2Cu3O7−δ. Our
theoretical analysis fits the experimental results excellently and provides good evidence that the
mechanism of thec-axis electronic conduction of YBa2Cu3O7−δ is the competition between
interlayer direct hopping and the hopping assisted by the spin fluctuations.

(a) (b)

Figure A1. (a) Diagram of the current–current correlation function associated with the quasiparticle

direct interlayer hopping current. The open circle vertices denoteD
µµ′
kk′ in the text. (b) Diagram

of the current–current correlation function associated with the quasiparticle interlayer hopping
(assisted by spin fluctuations). The square vertices denoteJ in the text.
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Appendix. The Feynman diagrams that arise in calculation of the hopping current

The type of Feynman diagram that arises in the calculation of the hopping current is shown in
figure A1. The solid lines represent the exact one electron propagators for layer 1 and layer 2.
The wavy line represents the spin fluctuation propagator.
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